
Machine Vision
Door Entry System
with Raspberry Pi

2

Index

Overview

Overview								 2

Technology overview - Face recognition				 3

Project kit								 6

What you can learn from this kit					 7

Hardware setup							 8

Software requirements						 8

Instructions								 9

References								 13

How to scale this kit in real work application			 14

Common problems with real work application			 14

Facial recognition is the biggest advancement in
security systems since the introduction of CCTV
cameras. It’s a technology capable of matching a
human face from a digital image or a video frame
against a database of faces, typically employed to
authenticate users through ID verification services,
works by pinpointing and measuring facial features
from a given image.

Facial recognition technology (FRT) has materialized
as a nubile solution to solve many contemporary
requirements for verification and identification of
identity claims. It assembles the promise of other
biometric systems, which ventures to secure identity
to individual discrete body features

FRT has demonstrated effectiveness. It is highly
successful comparatively smaller populations residing
in controlled environments, for verification of identity
claims, where an image of a person’s face is matched
to an “on-file” pre-existing image and tied to the
claimed identity (said verification task). FRT, however,
betrays lackluster performance in complex attempts
to identify persons who are not keen to self-identify.
The FRT, in such cases, strives to match a person’s
face with any “on-file” image (identification task). Such
happenstance is the “face in the crowd” scenario,
where a face is plucked from a crowd in a chaotic
environment. This is unlikely to be an operational
reality in the foreseeable future.

FRT only recognizes a face if a particular person’s face
is advance added (enrolled) in the system.
Enrolment conditions—voluntary or not—and the
resulting image quality (gallery image) sign notably
impacts FRT’s final success. Image quality holds high
significance in FRT overall performance.

Performance depends on several other ascertained
factors, such as:
 y Environment: Better FRT performance

 relates to increased similar image environments
 to be compared (background, head size and
 its orientation, camera distance, and
 lighting conditions).
 y Image age: FRT performs better if less time has

 elapsed between the compared images.
 y Consistent camera use: FRT exhibits better

 performance if the optical characteristics of the
 said enrolment process camera and the obtained
 on-site image (light intensity, focal length, and color
 balance to name a few) are similar.
 y Gallery size: Since the number of possible

 images which enter the gallery as near-identical
 mathematical representations (biometric doubles)
 and increases with bigger gallery size, limiting the
 gallery size in “open set” identification applications
 (like watch list applications) may assist system
 integrity maintenance and boost overall performance.

3

Technology overview - Face recognition
Face recognition is the technology which involves
the understanding of how the faces are recognized
by biological systems and how this can be emulated
by computer systems. Its one of the few biometric
methods that possess the merits of both high accuracy
and low intrusiveness.

This section covers how contemporary face recognition
works! To do this, we will push this tech to solve a
challenging problem — distinguish Mark Wahlberg
from Matt Damon.

Face recognition is a series of multiple related problems:

1.  Look at the picture understudy and find the faces

2.  Focus on an individual face and try to comprehend
 even if that particular face is in a strange weird
 direction or illuminated by bad lighting, it continues
 to be the same person.

3.  Select the face’s unique features. These features
 differentiate that particular individual from others.
 These can be big eyes, a longer face, and the like.

4.  Finally, compare the face’s distinctive features to all
 known people to determine the individual’s name.

There is a need to create a pipeline where each step
of face recognition is solved separately and pass the
result to the succeeding step. The essence is to chain
multiple machine learning (ML) algorithms.

Face recognition steps
We will steadily solve this multiple step problem. We’ll
learn about a different ML algorithm in each step. You’ll
learn the principal ideas behind each algorithm and how
you can create your facial recognition system in Python.

Step 1: Finding faces
Face detection is the first step in the pipeline. Any
modern camera user has seen face detection in action:

Face detection is a winning camera feature. Since the
camera automatically determines faces, it ensures that
all faces are in focus before the final shot. However, we
have a different motive — find the image areas we will
pass to the subsequent step in the pipeline.

To locate faces in our image, we’ll make it black and
white as we don’t require color data to ascertain faces:

Then we’ll study individually every pixel in our image.
We will look at the pixels directly surrounding the pixel
under observation.

We aim to figure out how dim the current pixel is in
contrast to the pixels encircling it. Then we will draw an
arrow showing the direction where the image gets darker:

The repetition of this process for every single pixel in
the image culminates with every pixel substituted by an
arrow. Such arrows are term gradients and they show
the flow from light to dark across the complete image.

There’s an excellent reason for substituting pixels with
gradients. If pixels are directly analyzed, really light images
and dark images of the same individual will come to
different pixel values. However, if you only consider the
direction of changes in brightness, both bright images
and dark images will have identical representation. The
problem is thus much easier to solve!

Saving the gradient for each pixel provides us excessive
detail. We simply need to see the fundamental flow of
lightness or darkness at a higher level to ascertain the
image’s fundamental pattern. We’ll splinter the image
into small 16x16 pixels squares. We’ll count in each
square the number of gradients that point in each
major direction. We’ll then substitute that square in
the image with the strongest arrow directions.

Fig: Mark Wahlberg (left) Matt Damon(Right)

Fig: Converting image to gray scale

Fig: Pixel observation

Fig: Gradients

Fig: Face detection in phones

4

The result is that we turn the original image into an
extremely simple representation that successfully
captures the primary face structure:

The original image is made into a HOG representation
that expresses the major features of the image
independent of image brightness.

Step 2: Posing and projecting faces
You have isolated the faces in the image. Now you
must tackle the problem of faces turned in different
directions which appear different to a computer:

To compensate, you must warp each picture so the
eyes and lips always remain in the image sample place.
Face comparison will now be much easier in the next
steps. An algorithm named face landmark estimation
is used to achieve this.

The fundamental idea is to arrive with 68 specific points
(aka landmarks) that every face has — outside edge of
each eye, and top of the chin. Then you will train an ML
algorithm to locate these 68 face specific points:

Here’s the result of finding the 68 face landmarks on
the test image:

Step 3: Encoding faces
Now we are in the crux of the problem — actually
figuring faces apart. This is the exciting part!

The simplest approach to recognize a face is to directly
compare the unknown face we discovered in Step 2
with all the pictures of people already tagged. Finding
a previously tagged face that appears similar to the
unknown face establishes it to be the same person.
Seems legit, right?

That approach brings an insurmountable problem.
A site like Facebook with billions of subscribers and
trillions of photos cannot possibly swing through every
previous-tagged face to compare it to any newly
uploaded picture. This would take a lot of time. Faces
must be recognized in milliseconds, not days.

What we require is a technique to obtaining a few basic
measurements from each face. We may then measure
the unknown face the same way and locate the known
face having the closest measurements. To give an
example, we may measure individual ear size, nose
length, and spacing between eyes.

Researchers discovered that the best approach is to
allow the computer to figure out the measurements
which it will itself collect. Deep learning (DL) executes
a better job compared to humans when it comes to
figuring out the parts of a face that should be measured.

The solution? Train a Deep Convolutional Neural
Network. The trick is to train it to produce 128
measurements for each face.

The training process functions by simultaneously
analyzing 3 face images:

1.  Load training face image of any known person

2.  Load another picture of the same known person

3.  Load a picture of a completely different person

The neural network, after repeating this step millions of
times corresponding to millions of images of thousands
of individuals, the neural network subsequently learns
to reliably generate 128 measurements for an individual.
Any ten different pictures of the same person should
give approximately identical measurements.

ML professionals term a face’s 128 measurements
as embedding.

Fig: HOG representation of image

Fig: 68 Landmarks on actual image

Fig: 68 Landmarks on face

5

Step 4: Finding the person’s name
from the encoding
This last step is the easiest in the complete process. All
we simply have to do is find the person in our database
of known people who enjoy the closest measurements
to our test image.

Fig: Triplet training

Encoding our face image

Training a convolutional neural network to generate
face embedding needs substantial data and plentiful
computer power.

You simply have to run the face images through the
pre-trained network to obtain the 128 measurements
fora face. The measurements for our test image are:

Fig: 128 measurements of face

6

Project kit
We have put a solution together to help implement
face recognition technology with the help of Raspberry
Pi. It detects the faces in an image, identify key facial
features, and get the contours of detected faces.

This solution offers facial recognition in real-time
which makes it an ideal solution for an indoor
security applications.

The images must be processed before actual
recognition. An example of processing is converting
an image to grey. We will use Open CV to process an
image in this project.

OpenCV (Open Source Computer Vision Library) was
built to accelerate machine perception use in
commercial products and offer a common computer
vision applications infrastructure.

OpenCV targets real-time computer vision. It finds
principal use in image-related operations and assists
in the following functions:
 y Face detection and its features.
 y Detecting shapes like Circles and rectangles in an

 image. For example, finding a picture of a coin in
 an image.
 y Read images and Write images.
 y Recognizing text in images, like reading

 number plates

OpenCV use brings a few advantages:
 y Easy to learn since a large number of tutorials are

 readily available
 y Works with nearly all major languages.
 y Can be used free of cost

The solution requires Raspberry Pi 4, Raspberry Pi
High-Quality Camera, and PIFACE DIGITAL 2 board.
The Raspberry Pi 4 is a series of small single-board
computers with a 1.5 GHz 64-bit quad-core ARM
Cortex-A72 processor, on-board 802.11ac Wi-Fi,
Bluetooth 5, full gigabit Ethernet, two USB 2.0 ports,
two USB 3.0 ports, and dual-monitor support via a
pair of micro Type D HDMI ports for up to 4K
resolution. The Pi 4 is powered via a USB-C port.

Raspberry Pi camera consists of 12.3 megapixel Sony
IMX477 sensor which is based on back-illuminated
sensor architecture, with adjustable back focus and
support for C- and CS-mount lenses.

PiFace Digital 2 is designed to plug on to the GPIO
of your Raspberry Pi B+, allowing you to sense and
control the real world. With PiFace Digital 2 you can
detect the state of a switch. You can drive outputs to
power motors, actuators, LEDs, or anything you
can imagine.

Hardware Required
I.  Raspberry Pi 4 model B 4 GB

II.  Raspberry Pi 4 power supply

III.  Micro SD card

IV.  Raspberry Pi high-quality camera

V.  Solenoid lock, 12VDC, 18W

VI.  CLB-JL53 connector adapter

VII.  PEL00398 AC/DC power supply

VIII.  Relay board (PiRelay board)

https://www.element14.com/community/view-product.jspa?fsku=3051887&nsku=02AH3165&COM=noscript
https://www.element14.com/community/view-product.jspa?fsku=3106256&nsku=07AH1286&COM=noscript
https://www.element14.com/community/view-product.jspa?fsku=3238366&nsku=02AH6928&COM=noscript
https://www.element14.com/community/view-product.jspa?fsku=3381607,3381605,3381606&nsku=67AH5589,67AH5587,67AH5588&COM=noscript
https://www.element14.com/community/view-product.jspa?fsku=3275694&nsku=33AH9853&COM=noscript
https://www.element14.com/community/view-product.jspa?fsku=2381876&nsku=29X1550&COM=noscript
https://www.element14.com/community/view-product.jspa?fsku=2849398&nsku=25AC5051&COM=noscript
https://www.element14.com/community/view-product.jspa?fsku=3498491&nsku=79AC5500&COM=noscript

7

What you can learn from this kit
This solution is ideal for enthusiasts and hobbyists
interested in Machine Learning (ML) applications on
a single board computer (SBC) Raspberry Pi with
Raspbian operating system. From a hardware point of
view, it elaborates on how a relay works and interface
with an SBC. You will understand the technology
behind facial recognition and can use this technology
for your future projects.

The solution offers various easy to use ML capabilities
and will help you to develop various AI apps.

The Kit sample includes face detection and you can
perform the following using this kit:

 y Image classification
 Elements in the image classification service are
 classified into intuitive categories (people, activities,
 artwork, objects, or environments) to specify image
 themes and their respective application scenarios.
 This service is used to create apps that identify,
 manage, and classify images.

 y Object detection and tracking
 This service can detect multiple objects and track
 them in an image so that they can be located and
 classified in real-time. Images are recognized and
 examined using this feature. The ML Kit detects
 objects in each image, and acquire in real-time
 their respective locations within that image. Apps
 can be developed to filter away unwanted objects.

 y Face detection
 This service discerns 3D and 2D face contours.
 The 2D face detection skillfully detects aspects of
 the user’s face, inclusive of facial expression,
 wearing, age, and gender. The 3D face detection
 ability extracts information like face keypoint
 coordinates, face angle, and 3D projection matrix.
 Apps that dynamically beautify a users’ face during
 video calls use this feature.

 y Text recognition
 This text recognition service acquires text from
 images of documents, receipts, and business cards.
 It is widely used in transit, office, and education
 apps. You can extract text from a photo in a
 translation app and subsequently translate the text,
 thus improving the user experience.

 Such a service can run on a device or the cloud.
 The supported languages, however, differ in these
 two scenarios. The on-device API recognizes text in
 Korean, Simplified Chinese, Japanese, and Latin-
 based languages (including English, German,
 Spanish, Russian, Portuguese, and special
 characters). In contrast, the on-cloud API
 recognizes text in Spanish, Indonesian, Portuguese
 Simplified Chinese, English, Finnish, Norwegian,
 Swedish, Italian, German, French, Russian, Turkish,
 Thai, Arabic Japanese, Korean, Polish, Danish,
 and Hindi.

 y Document recognition
 This service recognizes text in document images
 with paragraph formats. Paper documents can thus
 be changed into electronic copies, with
 considerable improvement in the information input
 efficiency and reduction of labor costs.

8

Software requirements

Hardware setup

Raspbian operating system for Raspberry Pi Board.
The operating system can be downloaded from the
below link.

www.raspberrypi.org/downloads/

Required libraries:
OpenCV, Facial_recognition, Dlib

Connect the Raspberry Pi camera to the Raspberry Pi board. Mount PiFace Digital 2 board to the Raspberry Pi 4.

The Raspberry Pi output is either 5V or 3.3V, but our
solenoid Lock require 12V to operate So we need relay
to operate the Solenoid Lock . The relay input is 5V and
it is mounted on PiFace Digital2 board, so there is no
need for external power supply once the PiFace Digital
2 is mounted on it. After mounting the board, connect
red wire from DC jack connector to the common
Pin (C) of the relay 0 (R0) mounted on the PiFace
digital 2 board as shown in the figure. Connect red wire
of the Solenoid Lock to the normally open pin (NO) of
the relay. Connect black wire from the solenoid lock
which is a ground pin (GND) to the DC jack connector.
Finally connect DC jack connector to the 12V Adaptor.

Required cables & tools:
To connect load with relay, hook up wire are used as
per load requirement and to make connections, tools
like wire cutter and screwdriver are used. Click the
following links to make your choice.

Hook up wire
grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/
cable-wire-cable-assemblies/hook-up-wire?ost=cable

Wire cutter
grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/
tools-production-supplies/tools-hand-workholding/
cutters/prl/results?st=wire%20cutter

Stripping tools
grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/
tools-production-supplies/tools-hand-workholding/
stripping-tools/prl/results?st=wire%20cutter

Screw drive
grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/
tools-production-supplies/tools-hand-workholding/
screwdrivers/phillips-screwdrivers

Network requirements: Wi-Fi with internet

Fig: Hardware setup

http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/cable-wire-cable-assemblies/hook-up-wire?ost=cable
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/cable-wire-cable-assemblies/hook-up-wire?ost=cable
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/cutters/prl/results?st=wire%20cutter
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/cutters/prl/results?st=wire%20cutter
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/cutters/prl/results?st=wire%20cutter
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/stripping-tools/prl/results?st=wire%20cutter
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/stripping-tools/prl/results?st=wire%20cutter
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/stripping-tools/prl/results?st=wire%20cutter
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/screwdrivers/phillips-screwdrivers
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/screwdrivers/phillips-screwdrivers
http://grh.premierfarnell.com/pageredir.aspx?c=EU1&u=/c/tools-production-supplies/tools-hand-workholding/screwdrivers/phillips-screwdrivers

9

Instructions

Preparing the Raspberry Pi board:
Load a bootable image of Raspbian OS in SD card
which should be at least 16GB. Follow the below link to
prepare a bootable SD card with Raspbian OS.

www.raspberrypi.org/documentation/installation/
installing-images/README.md

Installing necessary libraries:
Open terminal by pressing Ctrl+Alt+T. A new terminal
window will open type below commands to install
the libraries

Now let us first update the repository and update our
operating system to the latest.

sudo apt-get update && sudo apt-get upgrade

We will now install Cmake and build-essential. CMake
is an open-source and free cross-platform software
tool for managing the software build process using
the compiler-independent method. Build-essential
comprises a package containing references to multiple
packages required for building general software. Such
libraries are a must to build openCV from source.

sudo apt-get install build-essential cmake pkg-
config

There are many different image files format we
generally use for image files most common are JPEG,
TIFF, PNG, BMP etc. we will install libraries which helps
in reading and writing images to the disk.

sudo apt-get install libjpeg-dev libtiff5-dev
libjasper-dev libpng-dev

We will now install libraries for reading and writing
video files. The libavcodec-dev encode and decode
audio and video data and Libavformat- a demuxer
library –supports a majority of the existing file formats.
The libswscale-dev finds use in scaling video files.
libv4l is a library collection adding a thin abstraction
layer on top of the video4linux2 devices. The function
of such a (thin) layer is to help application writers so
that they can easily support diverse devices without
the need to write separate code for separate devices
within the same class. The libxvidcore refers to an
open-source MPEG-4 video codec, implementing
the MPEG-4 Simple Profile. The libx264 denotes an
advanced encoding library used for the creation of H.
264 (MPEG-4 AVC) video streams.

sudo apt-get install libavcodec-dev libavformat-
dev libswscale-dev libv4l-dev

sudo apt-get install libxvidcore-dev libx264-dev

Now let us install libraries which supports graphical
user function. GTK+ is a multi-platform toolkit for
creating graphical user interfaces

sudo apt-get install libgtk2.0-dev libgtk-3-dev

Fonts libraries will now be installed. Fontconfig refers
to font customization, configuration, and c library,
independent of the X Window System. It is specifically
designed to find fonts within the system and
subsequently selects them as per application-specific
requirements. The multi-platform library Cairo offers
anti-aliased vector-based rendering for sundry
target backends.

sudo apt-get install libfontconfig1-dev
libcairo2-dev

We will now install libraries that help to render text.
Pango is a layout library and rendering text, with
a priority on internationalization. It can be used
anywhere where the text layout is a must.

sudo apt-get install libgdk-pixbuf2.0-dev
libpango1.0-dev

Libraries are installed to bank scientific data. Large
model files applied in ML are stored in libraries. HDF5 is
a library and file format for amassing scientific data.

sudo apt-get install libhdf5-dev libhdf5-serial-
dev libhdf5-103

Qt libraries will now be installed. It is a cross-platform
C++ application framework with rich widgets
set its primary feature. The Qt offers standard
GUI functionality.

sudo apt-get install libqtgui4 libqtwebkit4
libqt4-test python3-pyqt5

Coming next is the linear algebra library. The
Automatically Tuned Linear Algebra Software

(ATLAS) is a method for automatic numerical software
generation and optimization. ATLAS presently supplies
optimized versions of Basic Linear Algebra Subroutines
(BLAS), a complete linear algebra kernels set. The
BLAS is a linear algebra routine subset inside the
LAPACK library.

sudo apt-get install libatlas-base-dev gfortran

We will install libraries which helps in building modules
for python 2 and python3

sudo apt-get install python2.7-dev python3-dev

The ImageTk module holds support to first create and
then modify Tkinter, PhotoImage, BitmapImage, and
objects from the PIL images. This is optional and only
required when tkinter module is used.

sudo apt-get install python3-pil.imagetk

Let us now install pip. pip is the standard package
manager for Python. It allows you to install and manage
additional packages that are not part of the Python
standard library.

wget https://bootstrap.pypa.io/get-pip.py
sudo python3 get-pip.py

https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://bootstrap.pypa.io/get-pip.py

10

We will install numpy, Raspberry Pi camera, and the
needed libraries post pip installation for the PiFace
digital board.

NumPy is the basic scientific computing package in
Python. It is essentially a Python library that offers
a multidimensional array object, assortment for fast
operational routines, and various derived objects (like
masked arrays and matrices). The routines relate
to arrays, including mathematical, logical, sorting,
selecting, I/O shape manipulation, fundamental
statistical operations discrete Fourier transforms, basic
linear algebra, random simulation among others.

pip3 install numpy
pip3 install “picamera[array]”
pip3 install pifacecommon
pip3 install pifacedigitalio

Now we will install openCV from source. You can skip
this step if you want to directly install from repository.

Install OpenCV from source:
cd ~
wget -O opencv.zip https://github.com/opencv/
opencv/archive/4.2.0.zip
unzip opencv.zip
wget -
O opencv_contrib.zip https://github.com/opencv/
opencv_contrib/archive/4.2.0.zip
unzip opencv_contrib.zip

cd ~/opencv-4.2.0/
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
 -D CMAKE_INSTALL_PREFIX=/usr/local \
 -D OPENCV_EXTRA_MODULES_PATH=~/
 opencv_contrib-4.1.1/modules \
 -D ENABLE_NEON=ON \
 -D ENABLE_VFPV3=ON \
 -D BUILD_TESTS=OFF \
 -D INSTALL_PYTHON_EXAMPLES=ON \
 -D OPENCV_ENABLE_NONFREE=ON \
 -D CMAKE_SHARED_LINKER_FLAGS=-atomic \
 -D BUILD_EXAMPLES=ON...
make -j4
sudo make install
sudo ldconfig

OpenCV alternate install (Directly
through PiP)
pip3 install opencv-python==4.2.0.34

Facial recognition libraries
ML Applications libraries will now be installed. The Dlib
open-source library targets both research scientists
and engineers and aims to offer a thriving ML software
development environment. The Face_recognition
library is built on a dlib that Recognizes and also
manipulate faces taken from Python.

pip3 install dlib
pip3 install face_recognition
pip3 install imutils

Gather images for encodings
Gather some images which are used to actuate
our door lock. Create a new folder by name
‘actuatorImage’. Save four images (Mark Wahlberg,
Matt Damon, Keanu Reeves, and Hugh Jackman) in
total by their respective names. This will help us to
automatically get the names.

Code
Now we will write the code to get encodings from each
image. Create a new file and name it dataEncode.py
and save it to the home folder. Open the file in any
file editor and type the code which we will see
step by step.

Import the necessary libraries which is required for the
project which we installed earlier.

1. import os
2. import pickle
3. import cv2
4. import face_recognition

 We will create a list that will automatically import
images from our folder ‘actuatorImage’. Images =[]
will create a list of all imported images. Instead of
manually writing the name of each person, we will
obtain the names of the particular person from the
image itself. When we output the result the names of
the corresponding person are displayed.

We will grab a list of all images in the folder so we will
write mylist= os.listdir(path)

This will give us the path.

5. path = ‘actuatorImage’
6. images = []
7. classNames = []
8. mylist = os.listdir(path)
9. #print(mylist)

Let us now print the list and we can see the names
of the files in the folder. Run the file dataEncode.py
by typing python3 dataEncode.py in terminal. The
terminal window can be opened by typing Ctrl+Alt+T

Fig: Terminal window

The below code will loop over all the images and filter
out the extension .jpg from the image names.

10. for img in mylist:
11. current_img = cv2.imread(f’{path}/{img}’)
12. images.append(current_img)
13. classNames.append(os.path.splitext(img)[0])
14. print(classNames)

We will now print out the classNames by running
dataEncode.py. We see it prints without .jpg extension.

Fig: Terminal window

https://github.com/opencv/opencv/archive/4.2.0.zip
https://github.com/opencv/opencv/archive/4.2.0.zip
https://github.com/opencv/opencv_contrib/archive/4.2.0.zip
https://github.com/opencv/opencv_contrib/archive/4.2.0.zip

11

We will now save the list consisting of names to a file
so that can be used later by the Raspberry Pi. Data
encodings are done on faster machines since most of
the time as it takes more time to process on Raspberry
Pi. Hence it is better to save on a disk and move it to
the different machines.

15. with open(‘classNames.name’, ‘wb’) as f:
16. pickle.dump(classNames, f)

We will now begin the encoding process. We have to
find 128- embeddings of each image to be loaded. For
this, we will create a function by name findEncodings
and loop over each image to get the encodings. The
face_recognition.face_encodings(img)[0]) function
will find out all the encodings which are defined in the
facial_recognition library. We will append all these
encodings and save it to encodeList[]

17. def findEncodings(images):
18. encodeList = []
19. for img in images:
20. img = cv2.cvtColor(img, cv2.COLOR_
 BGR2RGB)
21. encode = face_recognition.face_
 encodings(img)[0]
22.
23. encodeList.append(encode)
24.
25. return encodeList

Save these encodings into the dataset_faces.dat file
with the help of the pickle library so we can use the
face encodings on any machine.

26. encodeListKnown = findEncodings(images)
27. print(“Total Images”,len(encodeListKnown))
28. print(‘Encoding Complete’)
29. #print(encodeListKnown)
30. with open(‘dataset_faces.dat’, ‘wb’) as f:
31. pickle.dump(encodeListKnown, f)

Save the dataEncode.py file and run it by typing
python3 dataEncode.py in the terminal.

Fig: Terminal window

We have created face encodings and we will use it to
compare it with real time faces using a camera and
actuate the door when it matches with the images in
the previously saved list.

Let us now create a new file and name it dataActuate.
py and import the necessary libraries.

1. import time
2. import cv2
3. import numpy as np
4. from imutils.video import VideoStream
5. import threading
6. import imutils
7. import face_recognition
8. import pickle
9. import RPi.GPIO as GPIO
10. GPIO.setmode(GPIO.BCM)
11. GPIO.setup(17, GPIO.OUT)
12. raspCam=True
13. cnt=0
14. import pifacedigitalio

Here we define our main function where we will
load previously generated dataset_faces.dat and
classNames.name file.

We will capture the image from the camera and
match the current image with the previously encoded
image. Whenever the current images match with the
previously saved image. The Raspberry Pi send signal
to Relay pins on which Magnetic Actuator is connected
and the door will open. There are few lines commented
out in the code which will show the name on the
display with the bounding box on the image.

20. if __name__ == ‘__main__’:
21.	
22. with open(‘dataset_faces.dat’, ‘rb’) as f:
23.	 encodeListKnown = pickle.load(f)
24. pfd = pifacedigitalio.PiFaceDigital()
25. with open(‘classNames.name’, ‘rb’) as f:
26.	 classNames = pickle.load(f)
27. count()
28. # Are we using the Pi Camera?
29. usingPiCamera = True
30. # Set initial frame size.
31. frameSize = (320, 240)
32.	
33. # Initialize mutithreading the videostream.
34.	
35. vs = VideoStream(src=0,
 usePiCamera=usingPiCamera,
 resolution=frameSize,
36.	 framerate=32).start()
37. # Allow the camera to warm up.
38. time.sleep(2.0)
39.	
40. timeCheck = time.time()
41. while True:
42.	 img = vs.read()
43.	 # success, img = cap.read()
44. imgS = cv2.resize(img, (0, 0), None,
 0.25, 0.25)
45.	 # img = cv2.cvtColor(imgS,cv2.COLOR_
 BGR2RGB)
46.	 # img = cv2.cvtColor(imgS, cv2.COLOR_
 RGB2BGR)
47.	 # img=imgS
48.	 facesCurFrame = face_recognition.	
 face_locations(imgS)
49.	 encodeCurFrame = face_recognition.
 face_encodings(imgS,
 facesCurFrame)
50.	 for encodeFace, faceLoc in
 zip(encodeCurFrame, facesCurFrame):
51.	 matches = face_recognition.
 compare_faces(encodeListKnown,
 encodeFace)
52.	 faceDis = face_recognition.face_
 distance(encodeListKnown,
 encodeFace)
53.	 print(faceDis)
54.	 matchIndex = np.argmin(faceDis)
55.	 if matches[matchIndex]:
56.	 name = classNames[matchIndex].
 upper()
57.	 print(name)
58.	 print(“DOOR UNLOCKED”)
59.	 pfd.relays[0].value = 1
60.	 #GPIO.output(17, GPIO.HIGH)
61.	 cnt = 3
62.	 # time.sleep(5);
63.	 # matches=False
64.	 # y1,x2,y2,x1=faceLoc
65.	 # cv2.
 rectangle(img,(x1,y1),(x2,y2),
 (0,255,0),2)
66.	 # cv2.rectangle(img,(x1,y2-
 35),(x2,y2),(0,255,0),cv2.FILLED)

12

67.	 # cv2.putText(img,name,(x1+6,y26),
 cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
68.	
69.	
70. # Get the next frame.
71.	
72.	
73. if cnt == 0:
74.	 #GPIO.output(17, GPIO.LOW)
75.	 pfd.relays[0].value = 0
76.	 print(“DOOR LOCKED”)
77.	 cnt = -1
78.	
79. # Show video stream
80.	 #cv2.imshow(‘orig’, img)
81.	 #key = cv2.waitKey(1) & 0xFF
82.	
83. # if the `q` key was pressed, break from
 the loop.
84.	 #if key == ord(“q”):
85.	 #break
86.	
87.	
88.	
89. # Cleanup before exit.
90.	 #cv2.destroyAllWindows()
91.	 #vs.stop()

When the door opens, we need to set the timer to
close after sometime and release the relay, for this let
us define the function.

15. def count():
16. 	 global cnt
17. 	 threading.Timer(1.0,count).start()
18.	 if cnt>0:
19.	 cnt=cnt-1

After writing the code, save the file dataActuate.py.
Open terminal by typing Ctrl+Alt+T. Type python3
dataActuate.py.

The codes runs and prints Door Locked as shown in
below figure.

Fig: Terminal window

The code then starts the videostream from raspberry
pi camera and wait for the pictures to be detected.
When there is no valid image detected, the solenoid
valve will remain in closed position as shown in
below figure.

Fig: Undetected image

When the valid image detected the solenoid Lock will
open as shown in the below figure.

Fig: Detected image

In the terminal it will print the name of the
person whose image gets detected and the door
unlocked status.

Fig: Terminal window

13

References

Raspberry Pi 4 pin configuration

Datasheet:
www.farnell.com/datasheets/2819352.pdf

Relay board (PiFaceDigital2)

Datasheet:
www.farnell.com/datasheets/1881551.pdf

Raspberry Pi 4 power supply

Datasheet:
www.farnell.com/datasheets/2875936.pdf

Raspberry Pi high quality camera

Raspberry Pi high quality camera - product brief:
static.raspberrypi.org/files/product-briefs/
Raspberry_Pi_HQ_Camera_Product_Brief.pdf

Solenoid lock

Datasheet:
www.farnell.com/datasheets/2865757.
pdf?_ga=2.69730000.1158994131.1604400308-
1482936714.1603999527

https://www.farnell.com/datasheets/2819352.pdf
http://www.farnell.com/datasheets/1881551.pdf
http://www.farnell.com/datasheets/2875936.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry_Pi_HQ_Camera_Product_Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry_Pi_HQ_Camera_Product_Brief.pdf
http://www.farnell.com/datasheets/2865757.pdf?_ga=2.69730000.1158994131.1604400308-1482936714.1603999527
http://www.farnell.com/datasheets/2865757.pdf?_ga=2.69730000.1158994131.1604400308-1482936714.1603999527
http://www.farnell.com/datasheets/2865757.pdf?_ga=2.69730000.1158994131.1604400308-1482936714.1603999527

14

How to scale this kit into real work application?

Common problems with real work application

The facial recognition technology can be used in various real world applications few of them can be:

The face detection complication is a tough one as it
must account for all possible appearance variations due
to lighting conditions, facial features color of the face,
illumination change, and occlusions.

A relay is generally characterized by its rated coil
voltage for operating its contacts, and its maximum
switching voltage and current. The manufacturer
prints this well-intended warning to prevent
contact destruction.

The effects that happen at a relay contact primarily
depend on the type and size of the load, operation
time, the current, the contact size and material, and
the contact bounce.

Validate identity at ATMs
Face scans will, in all probability, replace ATM cards
as face recognition is a proven identity authentication
tool. However, until such a time comes, face
recognition can be deployed to ensure that persons
using ATM cards are who they claim to be. Face
recognition is at present being used at Macau ATMs to
secure peoples’ identities

Driver recognition
Several car companies continue to experiment with the
many uses of face recognition. One use is using a face
to substitute the ignition key. Face recognition can be
used to change seat preferences and radio stations
based on the driver. Face recognition protect drivers
safer by recognizing and alerting drivers if they drift off
or lose focus while driving.

Smart advertising
Face recognition makes possible targeted advertising
by making educated guesses when it comes to people’s
gender and age. Companies (like Tesco) plan to install
integrated face recognition screens at gas stations with
face recognition technology built-in.

Track school attendance
Face recognition has the potential to track students’
attendance. Tablets can scan students’ faces and then
match their photographs against a database to confirm
their identities.

