Why true-rms?
Non-linear loads need a true-rms current clamp for accurate readings

Introduction

Troubleshooting the electrical service feeding adjustable speed motor loads can be difficult if you don't have the right tools. New solid state motor drives and heating controls often conduct non-sinusoidal (distorted) current. In other words, the current occurs in short pulses rather than the smooth sine wave drawn by a standard induction motor. The current wave shape can have a drastic effect on a current clamp reading.

Basically, there are two types of current clamps commonly available: “average responding” and “true-rms.” The average responding units are widely used and are usually lower cost. They give correct readings for linear loads such as standard induction motors, resistance heaters, and incandescent lights. But when loads are non-linear, containing semiconductors, the average responding meters typically read low. Worst case non-linear loads include small adjustable speed drives (5 hp or less) connected line to line across two phases of a 480 V, three-phase system, solid state heater controls connected single phase to 240 V, or computers connected to 120 V. When troubleshooting a branch circuit that suffers from circuit breaker tripping (or fuse blowing), the cause of the trouble can usually be separated into one of three categories:
1. Too much current.
2. Too much heat in the electrical enclosure.
3. Faulty circuit breaker (or fuse).

Your first instinct will probably be to measure the current with a current clamp while the load is on. If the current is within the circuit rating, you may be tempted to replace the circuit breaker.

Figure 1. One current—two readings. Which do you trust? The branch circuit above feeds a non-linear load with distorted current. The true-rms clamp reads correctly but the average responding clamp reads low by 32 percent.

Figure 2. A computer load.

Non-linear loads that cause measurement errors.

Figure 3. An adjustable speed motor load.
What is true-rms?

“RMS” stands for root-mean-square. It comes from a mathematical formula that calculates the “effective” value (or heating value) of any ac waveform. In electrical terms, the ac rms value is equivalent to the dc heating value of a particular waveform—voltage or current. For example, if a resistive heating element in an electric furnace is rated at 15 kW of heat at 240 V ac rms, then we would get the same amount of heat if we applied 240 V of dc instead of ac.

Electrical power system components such as fuses, bus bars, conductors, and thermal elements of circuit breakers are rated in rms current because their main limitation has to do with heat dissipation. If we want to check an electrical circuit for overloading, we need to measure the rms current and compare the measured value to the rated value for the component in question.

If a current clamp is labeled with “true-rms” on the front panel, then you probably have an average responding current clamp. (See Figure 4.) If you are trying to measure current drawn by a non-linear load containing semiconductors, without a true-rms meter, you are likely to make the wrong conclusion; that the problem is a faulty circuit breaker. Replacing the breaker won’t help. You’ll get a call-back with some unpleasant words from your customer. To avoid this, read the sidebar about true-rms, find your local Fluke distributor and get your true-rms meter, you are likely to make the wrong conclusion; that the problem is a faulty circuit breaker. Replacing the breaker won’t help. You’ll get a call-back with some unpleasant words from your customer.

Multimeter type	Response to sine wave	Response to square wave	Response to single phase diode rectifier	Response to 3 1/2 diode rectifier
Average responding | Correct | 10 % high | 40 % low | 5–30 % low |
True-rms | Correct | Correct | Correct | Correct |

Figure 5. A comparison of average responding and true-rms units

Before you do that, make two other observations: First, analyze the load. If the load contains power semiconductors, rectifiers, SCRs, etc., be suspicious of the current clamp reading. Second, look at the front panel of your current clamp—does it say true-rms?

Fluke Corporation
PO Box 9090, Everett, WA USA 98206
Fluke Europe B.V.
PO Box 1186, 5602 BD Eindhoven, The Netherlands
For more information call:
In the U.S.A. (800) 443-5853 or Fax (425) 446-5116
In Europe/M-East/Africa (31 40) 2 675 200 or Fax (31 40) 2 675 222
In Canada (800)-36-FLUKE or Fax (905) 890-6866
From other countries +1 (425) 446-5500 or Fax +1 (425) 446-5116
Web access: http://www.fluke.com/

©2002 Fluke Corporation. All rights reserved.